19 research outputs found

    Asynchronous Spiking Neural P Systems with Multiple Channels and Symbols

    Get PDF
    Spiking neural P systems (SNP systems, in short) are a class of distributed parallel computation systems, inspired from the way that the neurons process and communicate information by means of spikes. A new variant of SNP systems, which works in asynchronous mode, asynchronous spiking neural P systems with multiple channels and symbols (ASNP-MCS systems, in short), is investigated in this paper. There are two interesting features in ASNP-MCS systems: multiple channels and multiple symbols. That is, every neuron has more than one synaptic channels to connect its subsequent neurons, and every neuron can deal with more than one type of spikes. The variant works in asynchronous mode: in every step, each neuron can be free to fire or not when its rules can be applied. The computational completeness of ASNP-MCS systems is investigated. It is proved that ASNP-MCS systems as number generating and accepting devices are Turing universal. Moreover, we obtain a small universal function computing device that is an ASNP-MCS system with 67 neurons. Specially, a new idea that can solve ``block'' problems is proposed in INPUT modules

    KIAA1199 promotes migration and invasion by Wnt/β-catenin pathway and MMPs mediated EMT progression and serves as a poor prognosis marker in gastric cancer

    Get PDF
    Background KIAA1199 was upregulated in diverse cancers, but the association of KIAA1199 with gastric cancer (GC), the biological role of KIAA1199 in GC cells and the related molecular mechanisms remain to be elucidated. Methods KIAA1199 expression was analysed by reverse transcription-polymerase chain reaction assay (RT-PCR) and immunohistochemistry (IHC) in GC patient tissue. The small hairpin RNA (shRNA) was applied for the knockdown of endogenous KIAA1199 in NCI-N87 and AGS cells. MTT, colony formation, scratch wounding migration, transwell chamber migration and invasion assays were employed respectively to investigate the role of KIAA1199 in GC cells. The potential signaling pathway of KIAA1199 induced migration and invasion was detected. Results KIAA1199 was upregulated in GC tissue and was an essential independent marker for poor prognosis. Knockdown KIAA1199 suppressed the proliferation, migration and invasion in GC cells. KIAA1199 stimulated the Wnt/β-catenin signaling pathway and the enzymatic activity of matrix metalloproteinase (MMP) family members and thus accelerated the epithelial-to-mesenchymal transition (EMT) progression in GC cells. Conclusion These findings demonstrated that KIAA1199 was upregulated in GC tissue and associated with worse clinical outcomes in GC, and KIAA1199 acted as an oncogene by promoting migration and invasion through the enhancement of Wnt/β-catenin signaling pathway and MMPs mediated EMT progression in GC cell

    Decoupling Characteristics and Torque Analytical Model of Sharing-Suspension-Windings Bearingless Switched Reluctance Motor Considering Flux-Linkage Saturation

    No full text
    As its name indicates, the bearingless switched reluctance motor does not have windings or permanent magnets on the rotor. This has the advantages of simple structure, high reliability and easy control. The sharing-suspension-windings bearingless switched reluctance motor inherits the above characteristics, and has obvious advantages in the research field of bearingless motors with its motor structure of decoupling torque and radial force. In this paper, the sharing-suspension-windings bearingless switched reluctance motor is taken as the research object. The finite element model of the sharing-suspension-windings bearingless switched reluctance prototype is established. The electromagnetic characteristics of the prototype are analyzed. As the premise of motor suspension, the structural decoupling of torque and radial force is analyzed and experimentally verified. Then, the flux-linkage saturation of the motor is derived at the position where the stator and rotor are completely aligned and the stator and rotor are completely unaligned. The torque model of the motor is derived based on the flux-linkage saturation, and the accuracy of the model is verified by the fitting comparison between the theory and the finite element simulation. It lays a theoretical foundation for the subsequent structure optimization design research of the sharing-suspension-windings bearingless switched reluctance motor

    Decoupling Characteristics and Torque Analytical Model of Sharing-Suspension-Windings Bearingless Switched Reluctance Motor Considering Flux-Linkage Saturation

    No full text
    As its name indicates, the bearingless switched reluctance motor does not have windings or permanent magnets on the rotor. This has the advantages of simple structure, high reliability and easy control. The sharing-suspension-windings bearingless switched reluctance motor inherits the above characteristics, and has obvious advantages in the research field of bearingless motors with its motor structure of decoupling torque and radial force. In this paper, the sharing-suspension-windings bearingless switched reluctance motor is taken as the research object. The finite element model of the sharing-suspension-windings bearingless switched reluctance prototype is established. The electromagnetic characteristics of the prototype are analyzed. As the premise of motor suspension, the structural decoupling of torque and radial force is analyzed and experimentally verified. Then, the flux-linkage saturation of the motor is derived at the position where the stator and rotor are completely aligned and the stator and rotor are completely unaligned. The torque model of the motor is derived based on the flux-linkage saturation, and the accuracy of the model is verified by the fitting comparison between the theory and the finite element simulation. It lays a theoretical foundation for the subsequent structure optimization design research of the sharing-suspension-windings bearingless switched reluctance motor

    Effects of vegetation and physicochemical properties on solute transport in reclaimed soil at an opencast coal mine site on the Loess Plateau, China (Reprinted from Catena, vol 133, pg 403-411, 2015)

    No full text
    Mine soils are often polluted and degraded. The objectives of this study were to assess the effects of soil properties and vegetation on soil solute transport in reclaimed soil at an opencast coal mine site on the Loess Plateau. Four reclaimed areas with different vegetation types were selected for the analysis of physical and chemical properties. The miscible displacement technique was used to obtain the breakthrough curves (BTCs) of NO3- ion transport in undisturbed soil columns, which were taken from the soil profiles of the different sites. The chemical properties, such as total N, P, K and SOM, exhibited low contents, and the soil physicochemical properties showed high heterogeneity between different depths and different reclaimed areas. The structural stability index was less than 5%. The initial and entire penetration times were longer in the deeper layers than in the top layer. The BTCs of NO3- were fitted well by the deterministic equilibrium convection dispersion equation (CDE) model. Preferential flow and transport were found in the soil columns. The reclaimed soil had poor structure, and planting vegetation improved the physiochemical properties of the soil. The soil solute transport parameters exhibited high heterogeneity between different samples and were significantly correlated with soil bulk density and soil texture, which were highly influenced by vegetation and human activities. In the process of land reclamation, increasing the bulk density and selecting fine-textured soils could reduce the average soil pore water velocity and the dispersivity coefficient, thereby extending the solute penetration time. (C) 2016 Published by Elsevier B.V

    An integrated study on the pyrolysis mecanism of peanut shell based on the kinetic analysis and solid/gas characterization

    No full text
    An in-depth understanding of peanut shell pyrolysis reaction is essential for its efficient utilization. Detailed analysis of thermodynamics, kinetics, and reaction products can provide valuable information about pyrolysis reaction. In this work, pyrolytic reaction mechanism was elucidated with the analysis of thermogravimetric-mass spectrometry and the structural characterization of the derived biochar. The thermodynamic and kinetic parameters of three sub-stages were matched well in different model-free methods. The positive Delta H and Delta G values indicated that the pyrolysis reactions for three stages were endothermic and nonspontaneous. The reaction mechanism predicted by integral master-plots were F3 (f(alpha) = (1-alpha)(3)), F1 (f(alpha) = (1-alpha), and F3 (f(alpha) = (1-alpha)(3)) for the three sub-stages, respectively. The negative Delta S in the third stage was related to the reduced releasing of low-molecular weight gases and ordered graphite-like carbon structure. This study provides a prospective approach to understand the pyrolysis mechanism of biomass

    Inhibition of Human Immunodeficiency Virus Type 1 Entry by a Keggin Polyoxometalate

    No full text
    Here, we report the anti-human immunodeficiency virus (HIV) potency and underlying mechanisms of a Keggin polyoxometalate (PT-1, K6HPTi2W10O40). Our findings showed that PT-1 exhibited highly potent effects against a diverse group of HIV type 1 (HIV-1) strains and displayed low cytotoxicity and genotoxicity. The time-addition assay revealed that PT-1 acted at an early stage of infection, and these findings were supported by the observation that PT-1 had more potency against Env-pseudotyped virus than vesicular stomatitis virus glycoprotein (VSVG) pseudotyped virus. Surface plasmon resonance binding assays and flow cytometry analysis showed that PT-1 blocked the gp120 binding site in the CD4 receptor. Moreover, PT-1 bound directly to gp41 NHR (N36 peptide), thereby interrupting the core bundle formation of gp41. In conclusion, our data suggested that PT-1 may be developed as a new anti-HIV-1 agent through its effects on entry inhibition

    Effects of vegetation and physicochemical properties on solute transportin reclaimed soil at an opencast coal mine site on the Loess Plateau, China

    No full text
    Mine soils are often polluted and degraded. The objectives of this study were to assess the effects of soil properties and vegetation on soil solute transport in reclaimed soil at an opencast coal mine site on the Loess Plateau. Four reclaimed areas with different vegetation types were selected for the analysis of physical and chemical properties. The miscible displacement technique was used to obtain the breakthrough curves (BTCs) of NO3- ion transport in undisturbed soil columns, which were taken from the soil profiles of the different sites. The chemical properties, such as total N, P, K and SOM, exhibited low contents, and the soil physicochemical properties showed high heterogeneity between different depths and different reclaimed areas. The structural stability index was less than 5%. The initial and entire penetration times were longer in the deeper layers than in the top layer. The BTCs of NO3- were fitted well by the deterministic equilibrium convection dispersion equation (CDE) model. Preferential flow and transport were found in the soil columns. The reclaimed soil had poor structure, and planting vegetation improved the physiochemical properties of the soil. The soil solute transport parameters exhibited high heterogeneity between different samples and were significantly correlated with soil bulk density and soil texture, which were highly influenced by vegetation and human activities. In the process of land reclamation, increasing the bulk density and selecting fine-textured soils could reduce the average soil pore water velocity and the dispersivity coefficient, thereby extending the solute penetration time.</p
    corecore